Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38479228

ABSTRACT

Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.


Subject(s)
Ferrochelatase , Porphyrins , Humans , Catalytic Domain , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Ferric Compounds , Ligands , Porphyrins/chemistry , Iron/chemistry , Ferrous Compounds/metabolism
2.
FEBS J ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390750

ABSTRACT

The identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups. In particular, we have compared the reactivity of wild-type coproporphyrin ferrochelatase from the firmicute Listeria monocytogenes with those of variants, namely, His182Ala (H182A) and Glu263Gln (E263Q), involving two key active site residues. Interestingly, both variants are active only toward the physiological substrate coproporphyrin III but inactive toward protoporphyrin IX. In addition, E263 exchange impairs the final oxidation step from ferrous coproheme to ferric coproheme. The characteristics of the active site in the context of the residues involved and the substrate binding properties are discussed here using structural and functional means, providing a further contribution to the deciphering of this enigmatic reaction mechanism.

3.
Protein Sci ; 32(11): e4788, 2023 11.
Article in English | MEDLINE | ID: mdl-37743577

ABSTRACT

Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.


Subject(s)
Coproporphyrins , Iron , Coproporphyrins/metabolism , Iron/metabolism , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Propionates/chemistry , Catalysis
4.
J Inorg Biochem ; 245: 112243, 2023 08.
Article in English | MEDLINE | ID: mdl-37196412

ABSTRACT

This work focuses on the carbon monoxide adducts of the wild-type and selected variants of the coproheme decarboxylase from actinobacterial Corynebacterium diphtheriae complexed with coproheme, monovinyl monopropionyl deuteroheme (MMD), and heme b. The UV - vis and resonance Raman spectroscopies together with the molecular dynamics simulations clearly show that the wild-type coproheme-CO adduct is characterized by two CO conformers, one hydrogen-bonded to the distal H118 residue and the other showing a weak polar interaction with the distal cavity. Instead, upon conversion to heme b, i.e. after decarboxylation of propionates 2 and 4 and rotation by 90o of the porphyrin ring inside the cavity, CO probes a less polar environment. In the absence of the H118 residue, both coproheme and heme b complexes form only the non-H-bonded CO species. The unrotated MMD-CO adduct as observed in the H118F variant, confirms that decarboxylation of propionate 2 only, does not affect the heme cavity. The rupture of both the H-bonds involving propionates 2 and 4 destabilizes the porphyrin inside the cavity with the subsequent formation of a CO adduct in an open conformation. In addition, in this work we present data on CO binding to reversed heme b, obtained by hemin reconstitution of the H118A variant, and to heme d, obtained by addition of an excess of hydrogen peroxide. The results will be discussed and compared with those reported for the representatives of the firmicute clade.


Subject(s)
Carboxy-Lyases , Corynebacterium diphtheriae , Carbon Monoxide/metabolism , Propionates/chemistry , Heme/chemistry , Spectrum Analysis, Raman , Carboxy-Lyases/chemistry
5.
Biomolecules ; 13(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36830604

ABSTRACT

Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product.


Subject(s)
Carboxy-Lyases , Corynebacterium diphtheriae , Heme/metabolism , Hydrogen Bonding , Propionates/chemistry , Hydrogen Peroxide/chemistry , Corynebacterium diphtheriae/metabolism , Carboxy-Lyases/chemistry
6.
ACS Nano ; 17(3): 1965-1978, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36692902

ABSTRACT

In neuroinflammation, astrocytes play multifaceted roles that regulate the neuronal environment. Astrocytes sense and respond to pro-inflammatory cytokines (CKs) and, by a repertoire of intracellular Ca2+ signaling, contribute to disease progression. Therapeutic approaches wish to reduce the overactivation in Ca2+ signaling in inflammatory-reactive astrocytes to restore dysregulated cellular changes. Cell-targeting therapeutics might take advantage by the use of nanomaterial-multifunctional platforms such as graphene oxide (GO). GO biomedical applications in the nervous system involve therapeutic delivery and sensing, and GO flakes were shown to enable interfacing of neuronal and glial membrane dynamics. We exploit organotypic spinal cord cultures and optical imaging to explore Ca2+ changes in astrocytes, and we report, when spinal tissue is exposed to CKs, neuroinflammatory-associated modulation of resident glia. We show the efficacy of GO to revert these dynamic changes in astrocytic reactivity to CKs, and we translate this potential in an animal model of immune-mediated neuroinflammatory disease.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroglia , Inflammation/drug therapy
7.
Protein Sci ; 32(1): e4534, 2023 01.
Article in English | MEDLINE | ID: mdl-36479958

ABSTRACT

Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.


Subject(s)
Porphyrins , Porphyrins/chemistry , Coproporphyrins/metabolism , Propionates , Catalytic Domain , Ferrochelatase/genetics , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Binding Sites , Iron/metabolism
8.
J Raman Spectrosc ; 53(5): 890-901, 2022 May.
Article in English | MEDLINE | ID: mdl-35910417

ABSTRACT

The actinobacterial coproheme decarboxylase from Corynebacterium diphtheriae catalyzes the final reaction to generate heme b via the "coproporphyrin-dependent" heme biosynthesis pathway in the presence of hydrogen peroxide. The enzyme has a high reactivity toward H2O2 used for the catalytic reaction and in the presence of an excess of H2O2 new species are generated. Resonance Raman data, together with electronic absorption spectroscopy and mass spectrometry, indicate that an excess of hydrogen peroxide for both the substrate (coproheme) and product (heme b) complexes of this enzyme causes a porphyrin hydroxylation of ring C or D, which is compatible with the formation of an iron chlorin-type heme d species. A similar effect has been previously observed for other heme-containing proteins, but this is the first time that a similar mechanism is reported for a coproheme enzyme. The hydroxylation determines a symmetry lowering of the porphyrin macrocycle, which causes the activation of A2g modes upon Soret excitation with a significant change in their polarization ratios, the enhancement and splitting into two components of many Eu bands, and an intensity decrease of the non-totally symmetric modes B1g, which become polarized. This latter effect is clearly observed for the isolated ν10 mode upon either Soret or Q-band excitations. The distal His118 is shown to be an absolute requirement for the conversion to heme d. This residue also plays an important role in the oxidative decarboxylation, because it acts as a base for deprotonation and subsequent heterolytic cleavage of hydrogen peroxide.

9.
ACS Chem Biol ; 17(8): 2099-2108, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35797699

ABSTRACT

We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64. Accordingly, resonance Raman spectroscopy highlighted a more open distal pocket in the CO complex that, in agreement with MD simulations, likely involves His64 swinging inward and outward of the distal heme pocket. Ngb CDless displays a more rigid overall structure with respect to the wild type, abolishing the structural dynamics of the CDloop-D-helix hypothesized to mediate its signaling role, and it retains ligand binding control by distal His64. In conclusion, this mutant may represent a tool to investigate the involvement of CDloop-D-helix in neuroprotective signaling in a cellular or animal model.


Subject(s)
Neuroglobin/chemistry , Animals , Heme/chemistry , Ligands , Mice , Neuroglobin/metabolism
10.
J Inorg Biochem ; 229: 111718, 2022 04.
Article in English | MEDLINE | ID: mdl-35051755

ABSTRACT

Coproheme decarboxylases (ChdCs) are utilized by monoderm bacteria to produce heme b by a stepwise oxidative decarboxylation of the 2- and 4-propionate groups of iron coproporphyrin III (coproheme) to vinyl groups. This work compares the effect of hemin reconstitution versus the hydrogen peroxide-mediated conversion of coproheme to heme b in the actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) and selected variants. Both ferric and ferrous forms of wild-type (WT) CdChdC and its H118A, H118F, and A207E variants were characterized by resonance Raman and UV-vis spectroscopies. The heme b ligand assumes the same conformation in the WT active site for both the reconstituted and H2O2-mediated product, maintaining the same vinyl and propionate interactions with the protein. Nevertheless, it is important to note that the distal His118, which serves as a distal base, plays an important role in the stabilization of the cavity and for the heme b reconstitution. In fact, while the access of heme b is prevented by steric hindrance in the H118F variant, the substitution of His with the small apolar Ala residue favors the insertion of the heme b in the reversed conformation. The overall data strongly support that during decarboxylation, the intermediate product, a monovinyl-monopropionyl deuteroheme, rotates by 90o within the active site. Moreover, in the ferrous forms the frequency of the ν(Fe-Nδ(His)) stretching mode provides information on the strength of the proximal Fe-His bond and allows us to follow its variation during the two oxidative decarboxylation steps.


Subject(s)
Bacterial Proteins/chemistry , Carboxy-Lyases/chemistry , Corynebacterium diphtheriae/enzymology , Bacterial Proteins/genetics , Biocatalysis , Carboxy-Lyases/genetics , Catalytic Domain , Heme/chemistry , Hydrogen Peroxide/chemistry , Mutation
11.
Sci Total Environ ; 808: 152025, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34856255

ABSTRACT

The presence of an ever increasing amount of plastic in the Italian river system makes it necessary to understand the contribution of their different sources. We focus on the contribution from the wastewater treatment plants to the microplastics (MPs), size less than 5 mm, conveyed to the fluvial system, and on the development of methods for their detection in this matrix. This study, one of the first in Italy, is aimed to investigate the content of MPs present in the effluent of the main wastewater treatment plant in Florence (Italy). We sampled wastewater during dry season to mainly quantify the contribution from civil and municipal activities to the MPs release. The samples were continuously collected over a period of 24 h at the exit of the water line using a series of 8 sieves with different mesh sizes (almost 1000 L filtered volume). The sampled material was analyzed by optical microscopy and micro-Raman spectroscopy by use of low-cost, portable instruments. The spatial resolution of the spectrometer matches the minimum dimension of the mesh size in use (38 µm). The analysis detected an average concentration of 5 MPs per liter in the 38-1000 µm diameter range, corresponding to a daily release of about 35 kg/day into the River Arno, a result in line with other studies carried out on Europe's major rivers. We provide a classification of the polymer composition showing the predominant presence of Polypropylene (29%), Polyethylene (18%) and Polyester (14%). The MP shape classification reveals the relevance of fibers in effluents. The number of sieves used provided an accurate size distribution curve of the sampled MPs allowing to estimate, by extrapolation, a relevant quantity of MPs finer than 38 µm whose determination would otherwise require much more sophisticated methods.


Subject(s)
Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Microplastics , Plastics , Spectrum Analysis, Raman , Wastewater , Water Pollutants, Chemical/analysis
13.
Biophys J ; 120(17): 3600-3614, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34339636

ABSTRACT

Monoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations. As actinobacterial ChdCs use a histidine (H118) as a distal base, we studied the H118A and H118F variants to elucidate the effect of 1) the elimination of the proton acceptor and 2) steric constraints within the active site. The A207E variant mimics the proximal H-bonding network found in chlorite dismutases. This mutation potentially increases the rigidity of the proximal site and might impair the rotation of the reaction intermediate MMD. We found that both wild-type CdChdC and the variant H118A convert coproheme mainly to heme b upon titration with H2O2. Interestingly, the variant A207E mostly accumulates MMD along with small amounts of heme b, whereas H118F is unable to produce heme b and accumulates only MMD. Together with molecular dynamics simulations, the spectroscopic data provide insight into the reaction mechanism and the mode of reorientation of MMD, i.e., a rotation in the active site versus a release and rebinding.


Subject(s)
Carboxy-Lyases , Corynebacterium diphtheriae , Carboxy-Lyases/metabolism , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/metabolism , Decarboxylation , Heme/metabolism , Hydrogen Peroxide
14.
Chemphyschem ; 22(11): 1134-1140, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33794073

ABSTRACT

Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Šfrom the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli/chemistry , Hemeproteins/chemistry , Lipids/chemistry
15.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808378

ABSTRACT

Silver nanoparticles functionalized with thiolated ß-cyclodextrin (CD-SH) were employed for the detection of bisphenols (BPs) A, B, and S by means of surface-enhanced Raman spectroscopy (SERS). The functionalization of Ag nanoparticles with CD-SH leads to an improvement of the sensitivity of the implemented SERS nanosensor. Using a multivariate analysis of the SERS data, the limit of detection of these compounds was estimated at about 10-7 M, in the range of the tens of ppb. Structural analysis of the CD-SH/BP complex was performed by density functional theory (DFT) calculations. Theoretical results allowed the assignment of key structural vibrational bands related to ring breathing motions and the inter-ring vibrations and pointed out an external interaction due to four hydrogen bonds between the hydroxyl groups of BP and CD located at the external top of the CD cone. DFT calculations allowed also checking the interaction energies of the different molecular species on the Ag surface and testing the effect of the presence of CD-SH on the BPs' affinity. These findings were in agreement with the experimental evidences that there is not an actual inclusion of BP inside the CD cavity. The SERS sensor and the analysis procedure of data based on partial least square regression proposed here were tested in a real sample consisting of the detection of BPs in milk extracts to validate the detection performance of the SERS sensor.

16.
FEBS J ; 287(18): 4082-4097, 2020 09.
Article in English | MEDLINE | ID: mdl-32034988

ABSTRACT

Different murine neuroglobin variants showing structural and dynamic alterations that are associated with perturbation of ligand binding have been studied: the CD loop mutants characterized by an enhanced flexibility (Gly-loop40-48 and Gly-loop44-47 ), the F106A mutant, and the double Gly-loop44-47 /F106A mutant. Their ferric resonance Raman spectra in solution and in crystals are almost identical. In the high-frequency region, the identification of a double set of core size marker bands indicates the presence of two 6-coordinate low spin species. The resonance Raman data, together with the corresponding crystal structures, indicate the presence of two neuroglobin conformers with a reversed (A conformer) or a canonical (B conformer) heme insertion orientation. With the identification of the marker bands corresponding to each conformer, the data indicate that the B conformer increases at the expense of the A form, predominantly in the Gly-loop44-47 /F106A double mutant, as confirmed by X-ray crystallography. This is the first time that a reversed heme insertion has been identified by resonance Raman in a native 6-coordinate low-spin heme protein. This diagnostic tool could be extended to other heme proteins in order to detect heme orientational disorder, which are likely to be correlated to functionally relevant heme dynamics. DATABASE: Crystallographic structure: structural data are deposited in the Protein Data Bank under the 6RA6 PDB entry.


Subject(s)
Heme/chemistry , Neuroglobin/chemistry , Protein Conformation , Spectrum Analysis, Raman/methods , Amino Acid Sequence , Animals , Crystallography, X-Ray , Heme/metabolism , Mice , Neuroglobin/genetics , Neuroglobin/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
17.
Molecules ; 24(2)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650543

ABSTRACT

Dimethoate (DMT) is an organophosphate insecticide commonly used to protect fruit trees and in particular olive trees. Since it is highly water-soluble, its use on olive trees is considered quite safe, because it flows away in the residual water during the oil extraction process. However, its use is strictly regulated, specially on organic cultures. The organic production chain certification is not trivial, since DMT rapidly degrades to omethoate (OMT) and both disappear in about two months. Therefore, simple, sensitive, cost-effective and accurate methods for the determination of dimethoate, possibly suitable for in-field application, can be of great interest. In this work, a quick screening method, possibly useful for organic cultures certification will be presented. DMT and OMT in water and on olive leaves have been detected by surface enhanced Raman spectroscopy (SERS) using portable instrumentations. On leaves, the SERS signals were measured with a reasonably good S/N ratio, allowing us to detect DMT at a concentration up to two orders of magnitude lower than the one usually recommended for in-field treatments. Moreover, detailed information on the DMT distribution on the leaves has been obtained by Raman line- (or area-) scanning experiments.


Subject(s)
Pesticides/analysis , Spectrum Analysis, Raman , Dimethoate/analysis , Molecular Structure , Olea/chemistry , Pesticide Residues/analysis , Plant Leaves/chemistry , Spectrum Analysis, Raman/methods , Water Pollution, Chemical
18.
Nanoscale ; 10(19): 9329-9337, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29738000

ABSTRACT

Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 188: 141-148, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28709139

ABSTRACT

Using time-dependent density functional theory in conjunction with B3LYP functional and LANL2DZ/6-31+g(d,p) basis sets, static and pre-resonance Raman spectra of the indigo-Ag2 complex have been calculated. Structure optimization, excitation energies and pre-resonance Raman spectra of the indigo molecule have been obtained at the same level of theory. The available experimental Raman spectra at 1064, 785 and 514nm and the SERS spectra at 785 and 514nm have been well reproduced by the calculation. Experimental SERS spectra are confronted with the calculated pre-resonance Raman spectra obtained for the indigo-Ag2 complex. The Raman activities calculated under the infinite lifetime approximation show a strong dependence upon the proximity to the energy and the oscillator strength of the excitation electronic transition. The comparison of the integrated EFs for indigo and indigo-Ag2 calculated Raman spectra, gave some hints as to the enhancement mechanisms acting for the different excitation wavelengths. Whereas for excitation at a wavelength corresponding to 785nm, the enhancement mechanism for the Raman spectrum of the metal complex seems the chemical one, the strong increment (ten times) of the integrated EF of the Raman spectra of the complex in the case of 514nm excitation, suggests the onset of other enhancement mechanisms. Assuming that intra-cluster transitions with high oscillator strength can be thought of as to mimic surface plasmons excitations, we suggest the onset of the electromagnetic mechanisms (EM) as the origin of the Raman spectrum enhancement. Nevertheless, other enhancement effects cannot be ruled out, as a new molecular transition gains strength in the proximity of the excitation wavelength, as a consequence of the symmetry lowering of the molecule in the complex. A large variation across vibrational modes, by a factor of at least 104, was found for the EFs. This large variation in the EFs can indicate that B-term Herzberg-Teller scattering, due to metal and/or charge transfer states, can feed intensity to the inactive (in the molecule) and/or non totally symmetric modes.

20.
Phys Chem Chem Phys ; 19(34): 22749-22758, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28825742

ABSTRACT

Non-covalent interactions are ubiquitous and represent a very important binding motif. The direct experimental measurement of binding energies in complexes has been elusive for a long time despite its importance, for instance, for understanding and predicting the structure of bio-macromolecules. Here, we report a combined experimental and computational analysis on the 1 : 1 and 1 : 2 clusters formed by anisole (methoxybenzene) and carbon dioxide molecules. We have obtained a detailed description of the interaction between CO2 and anisole. This system represents quite a challenging test for the presently available experimental and theoretical methods for the characterization of weakly bound molecular complexes. The results, evaluated in the framework of previous studies on anisole clusters, show a very good agreement between experimental and theoretical data. A comparison of the experimental and computational data enabled the binding energy values of the 1 : 1 and 1 : 2 clusters to be determined in the ground electronic state of the neutral and cation complex and in the first excited singlet state of the neutral complex. In addition, it was possible to adduce the presence of different 1 : 1+ conformers, prepared by direct ionization of the 1 : 1 complex or by dissociative ionization of the 1 : 2 complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...